Step of Proof: gen_hyp_tp
9,38
postcript
pdf
Inference at
*
1
1
I
of proof for Lemma
gen
hyp
tp
:
1.
A
: Type
2.
e
:
A
3.
H
:
A
Type
4.
z
:
H
(
e
)
z
0
latex
by (%S%
\p.
\p
let UA = get_term_arg `UA` p
\p
in let A = get_term_arg `A` p
\pin
in let e = get_term_arg `e` p
\p
in let x = get_term_arg `x` p
\p
in
\pi
AssertL
\piAsse
[mk_member_term UA A
\piAs
;mk_member_term A e
\piAs
;mk_all_term (dv x) A (mk_member_term
\piAs;mk_all_term (dv x) A (mk_me
UA (mk_equal_term A e x))
\piAs
]
\pi
p)
latex
\p
1
: .....assertion..... NILNIL
\p1:
A
Type
\p
2
: .....assertion..... NILNIL
\p2:
5.
A
Type
\p2:
e
A
\p
3
: .....assertion..... NILNIL
\p3:
5.
A
Type
\p3:
6.
e
A
\p3:
x
:
A
. (
e
=
x
)
Type
\p
4
:
\p4:
5.
A
Type
\p4:
6.
e
A
\p4:
7.
x
:
A
. (
e
=
x
)
Type
\p4:
z
0
\p
.
origin